Jia Lee, Geunyeol Yu, Kyungmin Bae

Software Verification Lab, POSTECH

Cyber-Physical Systems

EEEEEEEEEE
EEEEEEEEEEEEE

||||||||||

INTERNET

a OF THINGS
A D
A
L]
1oT ENABLED —
AAAAAAAAA AN .,.. loT ENABLED CITiES loT EnABLET

= Fault diagnosis is key to reducing huge losses of both life and property

Signal Temporal Logic (STL)

= Requirement of CPS: CPS satisfies a desired property?

A

N\

0 t

Z

= Signal Temporal Logic (STL) : Specify properties of continuous real-valued signals

Ex) At some time in the first 10 seconds, x position is between 5m and 8m for 5 seconds.

= 0[0,10] (D[O,S] (Sm <x < 8m))

Verification Methods: Monitoring and Falsification

= Monitoring and Falsification:

1) Model a system and simulate the model

,gl Pathimport ‘M‘\
File Edit View Simulation Format Tools Help
D& {28 4|22 » Ilrﬂ INon'naI N EBEhEsy RERE

Obsticle
Vehicle Code: i_s

Ready 1100% [[[FixedStepDiscrete Y

2) Check whether a property holds for a given simulation trace

Verification Methods: Monitoring and Falsification

= Monitoring and Falsification:

2) Check whether a property holds for a given simulation trace

e Boolean semantics: True / False

* Quantitative semantics: Indicate how well the property is satisfied (robustness degree)

e Example: x > 37

€T A t]_ t2

Boolean semantics True False

Quantitative semantics

~Y

(Robustness degree)

= |imitation: Can’t guarantee correctness

Verification Method: Model Checking

= STL model checking : Do all possible signals of CPS satisfy STL ¢?

e |f a counterexample exists, it can always be found
= Limitation

1) Incomplete even for bounded signals

2) Only boolean semantics approach:

small perturbation of signals can cause the system to violate a property

Contribution

" Propose Boolean STL model checking algorithms (POPL 19, ASE ’21)

e Refutationally complete for bounded signals
m Propose robust STL model checking
* (Quantitative semantics approach

m Develop a robust STL model checker STLMC

SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework

: CPS Counterexample

| found

(o R

I No counterexample E
STL up to bound i

SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework

i CPS i SAT Counterexample
i i /' found
[Bounds]——'l SMT Encoding I—’l SoIver]
ety \ No counterexample
STL |79 UNSAT up to bound
‘4

SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework

CPS SAT Counterexample
o™ . /' found
[Bounds]——’[SMT Encoding H Solver]

i i \ No counterexample
i STL |79 i UNSAT up to bound

10

Key ldea

Ex) STL formula ¢ =

(1,21(x > 3)

" Truth values of STL are change discontinuously

= Variable point: a time point at which the truth value

of subformula of @ changes

= SMT encoding of STL based on variable points

11

Calculation of Variable Points

Ex) STL formula ¢ = O 57(x > 3)

x >3
A
T —
J' .
o 1 3 5 75 10 f
D[l,z](x>3)
A
T
1 —
0 2 3 65 8 10 ¢t

m (Calculation variable points for STL

1. Time points when the truth values of subformula are changed (ex. L— T)
2. Time interval in STL temporal operator

12

SMT Encoding of STL

m Bound parameters: time domain and the number of variable points

= SMT encoding of STL

e translate each subformula of STL to first order logic

e translate STL to first order logic using the translation result of subformula

13

Contribution

= Propose robust STL model checking

®* (Check robustness degrees of STL with respect to all possible signals of CPS

14

Robust STL model checking

= Problem: Only boolean semantics approach

e Small perturbations of signals can cause the system to violate the properties

s Robust STL model checking:

Check whether robustness degrees with respect to all possible signals are greater

than a robustness threshold € > (

Robustness

degree /\
RS W]

Time 15

€-Strengthening

= Robustness degree of x = 0 = Robustness degree of X = €

Robustness Robustness

degree /\ degree
e W —— /
0 A~ =) 0

Time

m X = € is strongerthan x = 0 by €

s Extend the definition of €-strengthening to STL, (p+€

/\ :

\/\/

Time

16

Reduction to Boolean STL Model Checking

" Find a counterexample of (p+€ for Boolean STL model checking

Robustness Robustness
degree

degree /\
+€
¢ /\ P\ ____ :
: [b ; A

= That is also a counterexample of ¢ for robust STL model checking

= Can reduce robust model checking to Boolean STL model checking

17

Robust STL Model Checking Framework

CPS / Jmmmmme ~« | smT \

|
»| SMT Encoding |—| : Solvers SAT
| : (--—-- > Counterexample
[Bounds]— | ; L3 ‘I
[:[SMTSoIving J| .
| ,————
STL : Interface | (\
, 1 Yices 1
4 { e-Strengthening] : | e UNSAI[No coutntirexar;ple]
R . : - up to boun
[Robustness]_ eduction '\ ! ,(dReal |
€)

N e)

= Problem: Computation cost of ODE dynamics is highly expensive

= Cannot obtain results in time
18

Robust STL Model Checking Framework

CPS / """" ~v [swm x

4 \
: ! 1
, | . Solvers
[SMT EnCOdlng]_>| SMT SO|V|ng I T SAT R [Counterexamp|e]
[Bounds]— | Interface ! ()
, I 1 Z3 1
| e
I
STL ' | (.)
' ! 1 Yices 1
P | e-Strengthening] :[Two-Step], - UNSAT:[No counterexample
Reduction Solving | (=== up to bound
[Robustness]_ l‘ | " dReal |
€ N e e o v ____)
k > y

19

Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions

20

Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions

2) Enumerate a possible scenario of the abstraction

21

Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions

2) Enumerate a possible scenario of the abstraction

3) Check the scenario with the flow and invariant

= Can parallelize the enumerations and the scenario checking

22

Minimization of Enumeration Scenarios

= Too many possible scenarios

Ex) if (x > 40) or (y > 50) or (v > 20):

setVelocity(v;,,,)

e There are 7 possible scenarios

 However, when x > 40 is satisfied, y > 50 and v > 20 are not important
= Suffices to consider only 3 scenarios

m Use a dual propagation approach to minimize enumerated scenarios

23

STLMC model checker: STLMC

= Develop a robust STL model checker STLMC

m [Functions:

e (Connect with various SMT solvers, such as Z3, Yices, and dReal

= Can verify CPS with ODE dynamics

e Implement several optimization techniques
e Visualization of counterexample signals and robustness degrees

= Can analyzing counterexamples and debugging CPS

24

m Networked Thermostat Controllers

room,

* X;: temperature of each room
roomy

~
N

I—
| \
| \

S * X; changes depending on the heater and

the temperature of the other room

e Control heaters to keep the temperatures within a certain range

e STL property: I:I[ZA]((xO —x124) 2 Oz310) (Xg —x1 < —3))

25

= |nput model

= Command

X0 >= 25 => (and (on@’ = @) (onl1’ = onl)
(x0’ = x0) (x17 = x1));
}
{ mode: ond = 0; onl = 0;
inv: x0 > 10; x1 > 10;
flow: d/dt[x@] = - k@ * (c0 * x@ - do * x1);

const ko = 0.015; const k1 = 0.045;
const ho = 100; const h1 = 200;
const c0 = 0.98; const c1 = 0.97;
const do = 0.01; const d1 = 0.03;
int ono; int oni;
[10, 35] x0; [10, 35] x1;
{mode: ond = 0; onl = 1;
inv: 10 < x@; x1 < 30;
flow: d/dt[x@0] = - k@ * (c@ * x0 - do x x1);
d/dt[x1] = k1 * (h1 - (c1 * x1 - d1 * x0));
jump: x0 <= 17 => (and (on@’ = 1) (on1’ = @)
(x0’ = x0) (x1’ = x1));
x1 >= 26 => (and (on1’ = @) (on@’ = ond)
(x0’ = x0) (x1’ = x1));
}
{mode: ono = 1; onl = 0;
inv: x@ < 30; x1 > 10;
flow: d/dt[x@0] = k@ * (h® - (c@ * x0 - do * x1));
d/dt[x1] = = k1 * (c1 * x1 - d1 * x0);
jump: x1 <= 16 => (and (on@’ = @) (on1’ = 1)

(x@’ = x0) (x1’ = x1));

d/dt[x1] = - k1 * (c1 * x1 - d1 * x0);
jump:
X0 <= 17 => (and (on@’ = 1) (on1’ = onl)
(x0’ = x0) (x1’ = x1));
x1 <= 16 => (and (on1’ = 1) (on@’ = ond)
(x0’ = x0) (x1’ =x1));
}

init: on0 = 0; 18 <= x0; x0 <= 22;
onl = 0; 18 <= x1; x1 <= 22;

proposition:
[p11: x@ - x1 >= 4; [p2]: x@ - x1 <= -3;
goal:
[f11: <>[0, 31(x0 >= 13 U0, inf) x1 <= 22);
[f2]: [1[2, 41(p1 -> <>[3, 1@] p2);

$./stlmc ./therm.model -bound 5 -time-bound 30 -threshold 2 \
-goal f2 -solver dreal -two-step -parallel -visualize
result: counterexample found at bound 2 (7.46335 seconds)

26

Analyzing counterexamples

®= Visualize counterexample signals and robustness degrees

£21 = 20 — 21 > 4 — Or3,10] (20 — 71 < —3) £2; = =(zo — 21 > 4)
£23 =Q0;3,10)(T0—21<-3) p1=z0—71>4 pa=z0—71 <3

25 T T T T T
x0 51

20" Xl =
15 F .

0
10+
5 1 | | 1 1
0 0
_SM -5

-10 | i . . f23 - 1 -0t
0 5 10 15 20 25 30

= Can analyzing counterexamples and debugging CPS
27

Experiment: Robust STL Model Checking

®m Benchmark models

e Two networked thermostat

A filtered oscillator

e Load management for two batteries

Autonomous driving of two cars

A railroad gate controller

Two networked water tank systems

28

Experiment: STL Model Checking

= Robust STL bounded model checking (Timeout: 30 min)

e 3 STL formulas with nested temporal operators for each model

e Use Yices and dReal as the underlying SMT solver

e Use both direct SMT solving (1-step) and two-step SMT solving (2-step)

m The tool and models are available at https://stimc.github.io

29

https://stlmc.github.io/cav2022

Dyn. Model STL formula € |¥| Time Result k Alg. #n

8 0[4,10] (pl — D[4,10] p2) 0.1 12.9 137 T - 1_Step -
Cﬁ] Bat (0[1,5] pl) R[5,20] D2 3.5 2.76 5.71 1L o 1 -step -
. I:][4’14] (pl — 0[0710] p2) 0.1 3.8 22.1 1L 8 1-step -
= O3 (p1 Ryz,10) p2) 2.5 18.8 262 T - 1-step -
g Wat (0[1,10] p1) U[2,5] P2 0.1 1.9 4.22 1 4 1 -step -
5 0[4,10] (pl — D[2’5] pz) 0.01 11.2 20.2 T - 1-step -
. Uio,4] (p1 — 0[2,5] D2) 0.5 22 7.24 1 5 1-step -
= Car (Op4qp1)Upgsp2 20 1.7 627 L 3 1-step -
I 0[0,3] (p1 U[0,5] p2) 0.1 7.3 9.72 T - 1-step -
Z
: 0[0,5] (p1 U[l,g] pz) 1.0 2.3 3.43 1 5 T1-step -
3 Rail 0[0,4] (p1 — D[2,10] pz) 5.0 3.8 0.86 T - 1-step -
- (Opo.5) p1) Upa,10] P2 40 19 28 1 4 1-step -
. 0[0,3] (pl U[O,oo) pz) 1.0 1.2 817 T - 2-step 3,646
1O Thm |:|[2’4] (pl — 0[3,10] pz) 20 0.7 7.46 1L 2 2-step 47
é‘ D101 Rio.seyp2) 2.0 12 593 1 4 2-step 212
o O10.31(p1 Rio,00) P2) 0.1 15 110 T - 2-step 289
8 Oscil Op2,51(0jo,31 p1) 1.0 1.2 224 1 3 2-step 259
(D[1,3] pl) R[2’5] P2 0.1 1.2 266 1 3 2-step 266

30

Concluding Remarks

= Propose SMT-based bounded model checking algorithm for STL
= Propose robust STL model checking
= Propose several optimization techniques:
two-step solving algorithm and the minimization of enumerated scenarios
= Developed a robust STL model checker STLMC

= Future work

* |[ntegrated with reachable-set computation methods

* Extend the method to verify STL properties for unbounded time

31

