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Cyber-Physical Systems
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= Fault diagnosis is key to reducing huge losses of both life and property



Signal Temporal Logic (STL)

= Requirement of CPS: CPS satisfies a desired property?
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= Signal Temporal Logic (STL) : Specify properties of continuous real-valued signals

Ex) At some time in the first 10 seconds, x position is between 5m and 8m for 5 seconds.

= 0[0,10] (D[O,S] (Sm <x < 8m))



Verification Methods: Monitoring and Falsification

= Monitoring and Falsification:

1) Model a system and simulate the model
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2) Check whether a property holds for a given simulation trace



Verification Methods: Monitoring and Falsification

= Monitoring and Falsification:

2) Check whether a property holds for a given simulation trace

e Boolean semantics: True / False

* Quantitative semantics: Indicate how well the property is satisfied (robustness degree)

e Example: x > 37

€T A t]_ t2

Boolean semantics True False

Quantitative semantics

~Y

(Robustness degree)

= |imitation: Can’t guarantee correctness



Verification Method: Model Checking

= STL model checking : Do all possible signals of CPS satisfy STL ¢?

e |f a counterexample exists, it can always be found
= Limitation

1) Incomplete even for bounded signals

2) Only boolean semantics approach:

small perturbation of signals can cause the system to violate a property



Contribution

" Propose Boolean STL model checking algorithms (POPL 19, ASE ’21)

e Refutationally complete for bounded signals
m Propose robust STL model checking
* (Quantitative semantics approach

m Develop a robust STL model checker STLMC



SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework

: CPS Counterexample
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SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework
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SMT-based Bounded STL Model Checking

= SMT-based bounded STL model checking framework

CPS SAT Counterexample
o™ . /' found
[Bounds]——’[ SMT Encoding H Solver ]

i i \ No counterexample
i STL |79 i UNSAT up to bound
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Key ldea

Ex) STL formula ¢ =

(1,21(x > 3)

" Truth values of STL are change discontinuously

= Variable point: a time point at which the truth value

of subformula of @ changes

= SMT encoding of STL based on variable points
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Calculation of Variable Points

Ex) STL formula ¢ = O 57(x > 3)
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m (Calculation variable points for STL

1. Time points when the truth values of subformula are changed (ex. L— T)
2. Time interval in STL temporal operator
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SMT Encoding of STL

m Bound parameters: time domain and the number of variable points

= SMT encoding of STL

e translate each subformula of STL to first order logic

e translate STL to first order logic using the translation result of subformula
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Contribution

= Propose robust STL model checking

®* (Check robustness degrees of STL with respect to all possible signals of CPS

14



Robust STL model checking

= Problem: Only boolean semantics approach

e Small perturbations of signals can cause the system to violate the properties

s Robust STL model checking:

Check whether robustness degrees with respect to all possible signals are greater

than a robustness threshold € > (
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€-Strengthening

= Robustness degree of x = 0 = Robustness degree of X = €

Robustness Robustness

degree /\ degree
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Time

m X = € is strongerthan x = 0 by €

s Extend the definition of €-strengthening to STL, (p+€
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Reduction to Boolean STL Model Checking

" Find a counterexample of (p+€ for Boolean STL model checking

Robustness Robustness
degree
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= That is also a counterexample of ¢ for robust STL model checking

= Can reduce robust model checking to Boolean STL model checking
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Robust STL Model Checking Framework
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= Problem: Computation cost of ODE dynamics is highly expensive

= Cannot obtain results in time
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Robust STL Model Checking Framework
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Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions
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Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions

2) Enumerate a possible scenario of the abstraction
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Parallelized Two-Step Solving

= Two-step solving procedure

1) Abstract of flow and invariant conditions

2) Enumerate a possible scenario of the abstraction

3) Check the scenario with the flow and invariant

= Can parallelize the enumerations and the scenario checking

22



Minimization of Enumeration Scenarios

= Too many possible scenarios

Ex) if (x > 40) or (y > 50) or (v > 20):

setVelocity(v;,,,)

e There are 7 possible scenarios

 However, when x > 40 is satisfied, y > 50 and v > 20 are not important
= Suffices to consider only 3 scenarios

m Use a dual propagation approach to minimize enumerated scenarios
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STLMC model checker: STLMC

= Develop a robust STL model checker STLMC

m [Functions:

e (Connect with various SMT solvers, such as Z3, Yices, and dReal

= Can verify CPS with ODE dynamics

e Implement several optimization techniques
e Visualization of counterexample signals and robustness degrees

= Can analyzing counterexamples and debugging CPS
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m Networked Thermostat Controllers

room,

* X;: temperature of each room
roomy
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S * X; changes depending on the heater and

the temperature of the other room

e Control heaters to keep the temperatures within a certain range

e STL property: I:I[ZA]((xO —x124) 2 Oz310) (Xg —x1 < —3))
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= |nput model

= Command

X0 >= 25 => (and (on@’ = @) (onl1’ = onl)
(x0’ = x0) (x17 = x1));
}
{ mode: ond = 0; onl = 0;
inv: x0 > 10; x1 > 10;
flow: d/dt[x@] = - k@ * (c0 * x@ - do * x1);

const ko = 0.015; const k1 = 0.045;
const ho = 100; const h1 = 200;
const c0 = 0.98; const c1 = 0.97;
const do = 0.01; const d1 = 0.03;
int ono; int oni;
[10, 35] x0; [10, 35] x1;
{mode: ond = 0; onl = 1;
inv: 10 < x@; x1 < 30;
flow: d/dt[x@0] = - k@ * (c@ * x0 - do x x1);
d/dt[x1] = k1 * (h1 - (c1 * x1 - d1 * x0));
jump: x0 <= 17 => (and (on@’ = 1) (on1’ = @)
(x0’ = x0) (x1’ = x1));
x1 >= 26 => (and (on1’ = @) (on@’ = ond)
(x0’ = x0) (x1’ = x1));
}
{mode: ono = 1; onl = 0;
inv: x@ < 30; x1 > 10;
flow: d/dt[x@0] = k@ * (h® - (c@ * x0 - do * x1));
d/dt[x1] = = k1 * (c1 * x1 - d1 * x0);
jump: x1 <= 16 => (and (on@’ = @) (on1’ = 1)

(x@’ = x0) (x1’ = x1));

d/dt[x1] = - k1 * (c1 * x1 - d1 * x0);
jump:
X0 <= 17 => (and (on@’ = 1) (on1’ = onl)
(x0’ = x0) (x1’ = x1));
x1 <= 16 => (and (on1’ = 1) (on@’ = ond)
(x0’ = x0) (x1’ =x1));
}

init: on0 = 0; 18 <= x0; x0 <= 22;
onl = 0; 18 <= x1; x1 <= 22;

proposition:
[p11: x@ - x1 >= 4; [p2]: x@ - x1 <= -3;
goal:
[f11: <>[0, 31(x0 >= 13 U0, inf) x1 <= 22);
[f2]: [1[2, 41(p1 -> <>[3, 1@] p2);

$./stlmc ./therm.model -bound 5 -time-bound 30 -threshold 2 \
-goal f2 -solver dreal -two-step -parallel -visualize
result: counterexample found at bound 2 (7.46335 seconds)
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Analyzing counterexamples

®= Visualize counterexample signals and robustness degrees

£21 = 20 — 21 > 4 — Or3,10] (20 — 71 < —3) £2; = =(zo — 21 > 4)
£23 =Q0;3,10)(T0—21<-3) p1=z0—71>4 pa=z0—71 <3
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= Can analyzing counterexamples and debugging CPS
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Experiment: Robust STL Model Checking

®m Benchmark models

e Two networked thermostat

A filtered oscillator

e Load management for two batteries

Autonomous driving of two cars

A railroad gate controller

Two networked water tank systems
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Experiment: STL Model Checking

= Robust STL bounded model checking (Timeout: 30 min)

e 3 STL formulas with nested temporal operators for each model

e Use Yices and dReal as the underlying SMT solver

e Use both direct SMT solving (1-step) and two-step SMT solving (2-step)

m The tool and models are available at https://stimc.github.io

29


https://stlmc.github.io/cav2022

Dyn. Model STL formula € |¥| Time Result k Alg.  #n

8 0[4,10] (pl — D[4,10] p2) 0.1 12.9 137 T - 1_Step -
Cﬁ] Bat (0[1,5] pl) R[5,20] D2 3.5 2.76 5.71 1L o 1 -step -
. I:][4’14] (pl — 0[0710] p2) 0.1 3.8 22.1 1L 8 1-step -
= O3 (p1 Ryz,10) p2) 2.5 18.8 262 T - 1-step -
g Wat (0[1,10] p1) U[2,5] P2 0.1 1.9 4.22 1 4 1 -step -
5 0[4,10] (pl — D[2’5] pz) 0.01 11.2 20.2 T - 1-step -
. Uio,4] (p1 — 0[2,5] D2) 0.5 22 7.24 1 5 1-step -
= Car  (Op4qp1)Upgsp2 20 1.7 627 L 3 1-step -
I 0[0,3] (p1 U[0,5] p2) 0.1 7.3 9.72 T - 1-step -
Z
: 0[0,5] (p1 U[l,g] pz) 1.0 2.3 3.43 1 5 T1-step -
3 Rail 0[0,4] (p1 — D[2,10] pz) 5.0 3.8 0.86 T - 1-step -
- (Opo.5) p1) Upa,10] P2 40 19 28 1 4 1-step -
. 0[0,3] (pl U[O,oo) pz) 1.0 1.2 817 T - 2-step 3,646
1O Thm |:|[2’4] (pl — 0[3,10] pz) 20 0.7 7.46 1L 2 2-step 47
é‘ D101 Rio.seyp2) 2.0 12 593 1 4 2-step 212
o O10.31(p1 Rio,00) P2) 0.1 15 110 T - 2-step 289
8 Oscil  Op2,51(0jo,31 p1) 1.0 1.2 224 1 3 2-step 259
(D[1,3] pl) R[2’5] P2 0.1 1.2 266 1 3 2-step 266
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Concluding Remarks

= Propose SMT-based bounded model checking algorithm for STL
= Propose robust STL model checking
= Propose several optimization techniques:
two-step solving algorithm and the minimization of enumerated scenarios
= Developed a robust STL model checker STLMC

= Future work

* |[ntegrated with reachable-set computation methods

* Extend the method to verify STL properties for unbounded time
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